Updates to VLSI theory
Refresher on VLSI bounds

We have a few bounds, mostly from the 1980s, for implementation on chips:

1. All nodes must be mapped to some unique location and time: $AT \geq \Omega(N)$

2. Bisections of the volume induce balanced cuts: $A \geq \Omega(k)$ (*) and $\sqrt{(A)T} \geq \Omega(k)$ (therefore $AT^2 \geq \Omega(k^2)$)

3. (in some cases) it must be possible to communicate across the chip: $T \geq \sqrt{A}$

Combining (1) and (3): $T^3 \geq \Omega(N)$

*: including memory-only area
First question: When do we have $T \geq \sqrt{A}$?

Suppose A is "minimum bounding box area," i.e. there are values on all 4 borders of the chip

- Single-output computation: some path has length at least $\sqrt{A}/2$
- Generalization: A computation graph with "path diameter" d has some path with length at least $\sqrt{(A)/d}$

So for computations with path diameter d, we have $T \geq \sqrt{A}/d$ (assume inputs are not replicated off-chip)
A bound on path diameter

- Dense matmul has path diameter 6:

 \[v_1 \rightarrow C_{ij} \leftarrow A_{i0} \rightarrow C_{in} \leftarrow B_{0n} \rightarrow C_{mn} \leftarrow v_2 \]

- Combined with \(AT^2 \geq \Omega(n^4) \), this gives us \(T^4 \geq \Omega(n^4) \) for \(T \geq \Omega(n) \)
- Bound achievable even with all I/O on perimeter and \(n^3 \)-style computation
Another bound on path diameter

- Sparse matrix - dense vector multiplication (SpMV) has path diameter determined by the input matrix
 - This is actually the same communication structure as a single iteration of Bellman-Ford
- Equal to the diameter of the bipartite graph defined by the matrix
 - Has something to do with the diameter of the input graph
- This gives bounds which hold even if you know the graph far in advance and can do fancy layout:
 - $T \geq \Omega(\sqrt[3]{n/d^2})$
 - $T \geq \Omega(\sqrt{b/d})$ where b is the minimum bisection of the graph
Notes on path-diameter-based bounds

- Any bound based on "there must exist a path of length..." is only a latency bound: time elapsed between first input and last output
 - Nothing to say the other paths didn't finish much earlier or start much later
 - So if we have to do k operations in a row, we can't just multiply the bound by k; they might be overlapped, even in the same area
 - The T in $\sqrt{A}T$ is throughput time, though

- Is the matmul bound useful?
 - We already kind of knew it

- Is the SpMV bound useful (say, for GNNs)?
 - "Maybe" - Alok Tripathy (paraphrased)

- Other thoughts?
 - We'd really like to have bounds on things other than latency – I have more on this
Bounds on Total Communication

Suppose we could show something like:

For any layout of the computation on a chip, at least \(k \) values must be communicated between the left and right thirds of the chip.

Since the distance these values must cross is \(\sqrt{A}/3 \), we have that the "total communication distance" is at least \(k \sqrt{A}/3 \).

This is a lower bound on "total work" and thus energy:

\[
\text{Energy} \geq \Omega(k \sqrt{A})
\]

\[
\sqrt{A}T \geq \Omega(k) \text{ as usual, so } ET \geq \Omega(k^2)
\]

\(k = n/3 \) for load-balanced, oblivious SpMV.