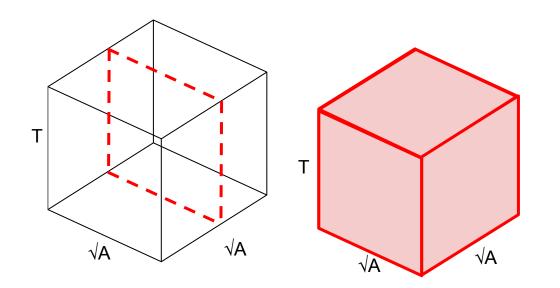
Updates to VLSI theory

Refresher on VLSI bounds

We have a few bounds, mostly from the 1980s, for implementation on chips:



- 1. All nodes must be mapped to some unique location and time: $AT \ge \Omega(N)$
- 2. Bisections of the volume induce balanced cuts: $A \ge \Omega(k)$ (*) and $\sqrt{(A)T \ge \Omega(k)}$ (therefore $AT^2 \ge \Omega(k^2)$)
- 3. (in some cases) it must be possible to communicate across the chip: T $\geq \sqrt{(A)}$

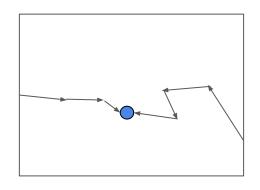
Combining (1) and (3): $T^3 \ge \Omega(N)$

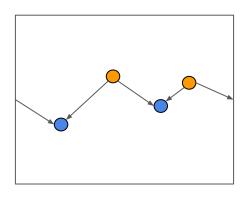
First question: When do we have $T \ge \sqrt{(A)}$?

Suppose A is "minimum bounding box area," i.e. there are values on all 4 borders of the chip

- Single-output computation: some path has length at least $\sqrt{(A)/2}$
- Generalization: A computation graph with "path diameter" d has some path with length at least √ (A)/d

So for computations with path diameter d, we have $T \ge \sqrt{(A)/d}$ (assume inputs are not replicated off-chip)





A bound on path diameter

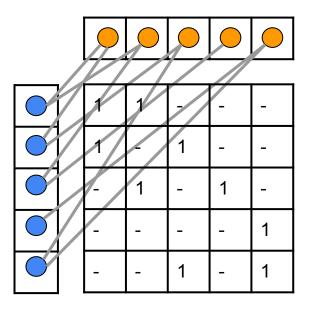
• Dense matmul has path diameter 6:

$$v_1 \to C_{ij} \leftarrow A_{i0} \to C_{in} \leftarrow B_{0n} \to C_{mn} \leftarrow v_2$$

- Combined with $AT^2 \ge \Omega(n^4)$, this gives us $T^4 \ge \Omega(n^4)$ for $T \ge \Omega(n)$
- Bound achievable even with all I/O on perimeter and n^3-style computation

Another bound on path diameter

- Sparse matrix dense vector multiplication (SpMV) has path diameter determined by the input matrix
 - This is actually the same communication structure as a single iteration of Bellman-Ford
- Equal to the diameter of the bipartite graph defined by the matrix
 - Has something to do with the diameter of the input graph
- This gives bounds which hold even if you know the graph far in advance and can do fancy layout:
 - $T \ge Ω(\sqrt[3]{(n/d^2)})$
 - $T \ge \Omega(\sqrt{b/d})$ where b is the minimum bisection of the graph



Notes on path-diameter-based bounds

- Any bound based on "there must exist a path of length..." is only a latency bound: time elapsed between first input and last output
 - Nothing to say the other paths didn't finish much earlier or start much later
 - So if we have to do k operations in a row, we can't just multiply the bound by k; they might be overlapped, even in the same area
 - The T in $\sqrt{(A)T}$ is throughput time, though
- Is the matmul bound useful?
 - \circ $\;$ We already kind of knew it
- Is the SpMV bound useful (say, for GNNs)?
 - "Maybe" Alok Tripathy (paraphrased)
- Other thoughts?
 - We'd really like to have bounds on things other than latency I have more on this

Bounds on Total Communication

Suppose we could show something like:

For any layout of the computation on a chip, at least k values must be communicated between the left and right thirds of the chip

Since the distance these values must cross is $\sqrt{(A)/3}$, we have that the "total communication distance" is at least $k\sqrt{(A)/3}$

This is a lower bound on "total work" and thus energy

Energy $\geq \Omega(k\sqrt{A})$

 $\sqrt{(A)T} \ge \Omega(k)$ as usual, so $ET \ge \Omega(k^2)$

k=n/3 for load-balanced, oblivious SpMV

