
Circuit Design 
for Near-Term 

Quantum 
Computers

Bhaskar Roberts and 
Mathias Weiden



Why Build Quantum Computers?
● Factoring: Shor’s quantum algorithm runs in O(n3) time. No poly-time classical 

algorithm is known. 

● Chemistry: Faster simulations of quantum systems

● Machine Learning: HLL algorithm to solve linear systems of equations

● Crypto: Unclonability is useful for copy-protection of programs and certified 

deletion of data.



Overview
● Near-term quantum computers are error-prone and have limited space

● Useful quantum algorithms are difficult to run on near-term devices

● We will show how to design quantum circuits to mitigate some of these issues



Theoretical Model
● We model a qubit as a vector in 

● Bloch sphere models the qubit as a vector in 3-dimensional space

● Single-qubit operations rotate the vector 

Single-qubit rotation (H) on the Bloch sphere [source]



Theoretical Model

Classical Concept Quantum Analog

bit ∊ {0,1} qubit ∊ ℂ2

n-bit string ∊ {0,1}n n-qubit state ∊ 

Logical operation Unitary matrix

Read the state (state does not change) Measure the state (state can change)

All operations, except for measurement, must be reversible (the 
matrix must be unitary).



Theoretical Model
● We’ll model a quantum computer as a circuit.

● Common logic gates: X, H, CNOT



Theoretical Model



Theoretical Model



Theoretical Model

An Example Quantum Circuit [source]

Inputs Measurement



Theoretical Model
● Universal set of gates: CNOT and all single-qubit unitaries

● Often only need a few single-qubit unitaries: X, Z, H



Physical Platforms
● Quantum phenomena are observable in many physical settings

● So there are many physical platforms we use to implement quantum computers

● Examples: superconducters, trapped ions, semiconductor defects, neutral 

atoms



Superconducting Qubits

4 superconducting qubits



Trapped Ion Qubits



Trapped Ion vs. Superconducting Qubits

Trapped Ion
+ Longer coherence times (order of seconds)

+ All multi-qubit interactions supported within trap

+ Operate at 4K (or even closer to room temperature)

- Parallelization of certain instructions is difficult

- Scalability is questionable because of physical traps, 

adding more ions introduces more thermal and 

vibrational noise

Superconducting
+ Typically easier to fabricate

+ Tunable, as the qubits are essentially non-linear LC 

oscillators

+ Fast gate times

- Capacitive coupling requires qubits be neighbors to 

interact

- Dilution fridges are needed to cool the chips (15mK), 

space is very limited, scalability is questionable

- Shorter coherence times, crosstalk control noise



Physical Platforms
● It’s difficult to make quantum computers work, especially at large scales. 

● Some difficulties are common to all platforms:
○ Noise: Qubits decohere quickly, and 2-qubit gates are very noisy

○ Local Interactions: Qubits must be nearby in order to interact

● Many important quantum algorithms require computation over many qubits



Benchmarks

● IBM’s newest quantum computer has 127 physical qubits [source]

● With current gate error rates, we need around 220 million qubits to break 

current RSA keys



Mapping Quantum Circuits to Hardware
● Placement 

○ Equivalent to graph isomorphism problem

○ Pick an assignment of labels for each qubit in the 

physical topology such that the distance between qubits 

that interact in some program is minimized.

IBM Washington - 127 Qubit 
Heavy Hex Topology



Mapping Quantum Circuits to Hardware
● Routing

○ Equivalent to token-swapping

○ Produce a list of SWAP operations between qubits in a 

physical topology so that each interaction in a program 

occurs along edges in the physical topology.

IBM Washington - 127 Qubit 
Heavy Hex Topology

A B A B

SWAP 3 CNOTs=



Mapping Quantum Circuits to Hardware

QFT Logical connectivity

2D Mesh



Techniques for Noise Mitigation
● Randomized compilation

○ Average out noise due to imprecise hardware

● Local algorithms
○ Design algorithms to be suited to hardware

● Circuit optimization
○ Shorten circuits



Local Algorithms
● Design algorithms that work well on limited hardware

● Alleviate or eliminate the need for mapping in some cases

● Examples include:
○ Transverse Field Ising Model circuit



Exact Circuit Optimization
● Find circuits that implement the 

exact same unitary

● Lots of work being done in 

different representations of 

quantum programs - ZX calculus

● Pattern match, do peephole 

optimization, use substitution 

rules

Exact circuit optimization with 
ZX-Calculus



Approximate Circuit Optimization: Unitary 
Synthesis
● Find shorter circuit that implements 

unitary within some small distance of a 

target unitary

● Use heuristic (A*) to search space of 

possible solutions

● Distance metric is typically the 

Hilbert-Schmidt norm

● Distance is chosen to be less than 

expected error due to noise
QSearch/LEAP Synthesis Algorithm



Unitary Synthesis

Improvement in CNOT Count of Circuits Mapped to Linear Topologies 
with QSearch vs. Qiskit (higher is better)

Reference 
Circuit

Synthesized 
Circuit



Unitary Synthesis
● Runtime scales exponentially with the number of qubits

● Large circuits must be partitioned into manageable subcircuits

● Circuit partitioning goal: form subcircuits with as many multi-qubit gates as 

possible - these tend to reduce the most

● Total distance is bounded by the sum of distances for each subcircuit



Open Questions
● Is there a way to know a priori if there is a shorter quantum circuit within some 

distance epsilon to some input quantum circuit or unitary?

● Can we derive lower bounds on the number of gates needed to implement some 

unitary given a restricted gate set?

● Given a unitary, can we predict which subtopology will result in the shortest 

synthesized circuit?


