Automated Derivation of Parametric Data Movement Lower Bounds for Affine Programs

Olivry et al
The approach

- They present some algorithms to compute I/O complexity lower bounds (same setup as HBL)
 - Their lower bounds are justified using arguments about standard computation graphs, which they call CDAGs
 - They generate them from a polyhedral model representation, though

Two types of lower bounds:

- HBL-style
- A way of counting a lot of live variables

Also there's something about "may-spill sets"
CDAGs

Parameters: N, M;
Input: A[N], C[M]; Output: A[N];
for (t=0; t<M; t++)
 for (i=0; i<N; i++)
 A[i] = A[i] * C[t];

(a) C-like code

Parameters: N, M;
Input: A[N], C[M]; Output: S_{M-1}[N];
for (0 ≤ t < M and 0 ≤ i < N)
 if (t==0): S_{0,i} = A[i] * C[0];
 else: S_{t,i} = S_{t-1,i} * C[t];

(b) Corresponding single assignment form

(c) Corresponding CDAG. Input nodes A[N] (resp. C[N]) are shown in grey (resp. white) while compute node are shown in black

Fig. 1. Example 1
Pebble Games and S+T partitioning

Model computation with communication by playing a "pebble game" on the CDAG (place a red pebble to mean "in fast memory," blue to mean "in slow memory"; only have a fixed number of red pebbles to use)

Translate this into a sequence of computes and loads

If you have a fast memory of size S, and you prove that any k iterations require S+T inputs, you can partition the whole computation into N/k pieces and each must contain at least T loads
for \((0 \leq t < M \text{ and } 0 \leq i < N)\)

\[\text{if } (t==0) : \quad S[0,i]=A[i] \times C[0];\]
\[\text{else} : \quad S[t,i]=S[t-1,i] \times C[t];\]

\[D_A = [N] \rightarrow \{A[i] : 0 \leq i < N\}\]
\[D_C = [N] \rightarrow \{C[t] : 0 \leq t < M\}\]
\[D_S = [M \times N] \rightarrow \{S[t, i] : 0 \leq t < M \land 0 \leq i < N\}\]
\[|D_S| = MN\]

(a) Single assignment form

(c) Node domains

\[R_{e_1} = [N] \rightarrow \{A[i] \rightarrow S[0, i] : 1 \leq i < N\}\]
\[R_{e_2} = [M \times N] \rightarrow \{C[t] \rightarrow S[t, i] : 0 \leq t < M \land 0 \leq i < N\}\]
\[R_{e_3} = [M \times N] \rightarrow \{S[t, i] \rightarrow S[t+1, i] : 0 \leq t < M-1 \land 0 \leq i < N\}\]

(b) DFG

(d) Edge relations

Fig. 2. DFG for Example 1

Image taken directly from Olivry et al.
Using the DFG

- Edges are direct dependencies, and are affine
- Paths/walks are composed dependencies

Find some paths/walks and argue that they correspond to projections between sets of iterations and sets of memory accesses; then apply HBL

- They identify two types of paths for which they can argue this

\[(2) \text{ Use the DFG representation to find a subset } V' \subseteq V \text{ and a set of projections (group homomorphisms) } \phi_1, \ldots, \phi_m \text{ with the property that:}\]

\[\text{Any } K\text{-bounded set } P \subseteq V' \setminus \text{Sources}(V') \text{ satisfies } |\phi_j(\rho(P))| \leq K. \quad (4)\]

\[(3) \text{ Using Theorem 3.10, derive an upper bound } U \text{ on } |\rho(P)| \text{ for any } K\text{-bounded } P. \text{ This provides a lower bound } \left\lceil \frac{|V'\setminus\text{Sources}(V')|}{U} \right\rceil \text{ on the number } h \text{ of disjoint } K\text{-bounded sets in } V' \setminus \text{Sources}(V').\]

(More details here)
Using the DFG part 2

They also have a totally unrelated second lower bound they compute.

If there are two disjoint sets of vertices in the CDAG V_1 and V_2, where everything in V_1 has a path to V_2, and I can find k disjoint paths between V_1 and V_2, then I need to do at least $k-S$ loads from slow memory (if my fast memory has size S).

They find some special cases of this using the DFG.

This is a bit strange and could maybe be extended usefully?
"May-spill sets"

Disclaimer: I don't fully understand this

General idea: If you have a fast memory of size S, you want to compute N iterations, and you know (through HBL, say) that only k iterations are computable given 2S values, you know you must have at least \((N/k)S\) memory accesses total.

In effect, this argument "partitions" the CDAG into \((N/k)\) disjoint sets of iterations, gets a lower bound (HBL-style, maybe) for each set, and sums them together.

Can I also sum lower bounds together if the sets are not disjoint?

Olivry et al say: yes, if their "may-spill sets" are disjoint.
"May-spill sets"

For a set \(V \) of iterations, its "may-spill set" is the set of iterations which have

1. both at least one incoming and at least one outgoing edge contained in \(V \), or

2. at least 2 outgoing edges contained in \(V \)

Intuitively: The set of nodes in \(V \) which "may spill" their value to slow memory if we only have to compute \(V \)

No communication with slow memory at all in "no-spill" set; no danger of double-counting
Questions for ourselves

- Can we generalize this to get computable lower bounds on communication in parallel?
- Can we use a more general model (and thus get stronger bounds on a wider range of algorithms)?
- Since we know that expanding and low-diameter graphs have large lower bounds in parallel hardware, can we get characterizations of which polyhedral algorithms have these properties?