Automated Derivation of
Parametric Data Movement
Lower Bounds for Affine

Programs
Olivry et al

The approach

e They present some algorithms to compute I/O complexity lower bounds

(same setup as HBL)

o Their lower bounds are justified using arguments about standard computation graphs, which
they call CDAGs
o They generate them from a polyhedral model representation, though

Two types of lower bounds:

e HBL-style
e A way of counting a lot of live variables

Also there's something about "may-spill sets"

CDAGs

Parameters: N, M;
Input: A[N], C[M]; Output: A[NI];
for(t=0;t<M;t++)
for (i=0; i<N; i++)
ALi] = A[i] = C[t];

(a) C-like code

Parameters: N, M;
Input: A[N], C[M]; Output: Sp_;[NI];
for (0<t<M and 0<i<N)
if (t==0): Sp; = A[i] * C[0];
else: S;; = St-1,i * CLt];

(b) Corresponding single assignment form

(c) Corresponding CDAG. Input nodes A[N]
(resp. C[N]) are shown in grey (resp. white)
while compute node are shown in black

Fig. 1. Example 1

Pebble Games and S+T partitioning

Model computation with communication by playing a
"pebble game" on the CDAG (place a red pebble to
mean "in fast memory," blue to mean "in slow memory";
only have a fixed number of red pebbles to use)

Translate this into a sequence of computes and loads

If you have a fast memory of size S, and you prove that
any k iterations require S+T inputs, you can partition
the whole computation into N/k pieces and each must
contain at least T loads

"Data flow graph”

for (0<t<M and 0<i<N)
if (t==0): Ss[e,i]=A[ilxC[e];
else: S[t, il=SLt-1,il*xCI[t]:

(a) Single assignment form

@w

(b) DFG

Image taken directly from Olivry et al

Ds =[N]— {Al]i]: 0<i< N}
Dc =[N]—- {C[t]: 0t <M}
Ds =[M, N] — {S[t,i]: 0<t<M A 0<i< N}

|Ds| = MN
(c) Node domains
Re, = [N] — {Ali] - S[0,i]: 1 <i <N}
R., = [M,N]— {C[t] > S[t,i]: 0<t<M A 0<i<N}
Re; =[M, N] — {S[t,i] > S[t+1,i]: 0<t<M-1 A 0<i< N}

(d) Edge relations

Fig. 2. DFG for Example 1

Using the DFG

e Edges are direct dependencies, and are affine
e Paths/walks are composed dependencies

Find some paths/walks and argue that they correspond to projections between
sets of iterations and sets of memory accesses; then apply HBL

e They identify two types of paths for which they can argue this

(2) Use the DFG representation to find a subset V/ C V and a set of projections (group homo-
morphisms) ¢y, . .., ¢, with the property that: (More details
Any K-bounded set P C V' \ Sources (V') satisfies |¢j(p(P))| < K. here) (4)

(3) Using Fhee-lli_legal'-f&-l-e- derive an upper bound U on |p(P)| for any K-bounded P. This provides a

lower bound [lv’\so‘gces(vﬂ on the number h of disjoint K-bounded sets in V' \ Sources (V).

Using the DFG part 2

They also have a totally unrelated second lower bound they compute

If there are two disjoint sets of vertices in the CDAG V1 and V2, where everything
in V1 has a path to V2, and | can find k disjoint paths between V1 and V2, then |
need to do at least k-S loads from slow memory (if my fast memory has size S)

They find some special cases of this
using the DFG

This is a bit strange and could maybe
be extended usefully?

"May-spill sets"

Disclaimer: | don't fully understand this

General idea: If you have a fast memory of size S, you want to compute N
iterations, and you know (through HBL, say) that only k iterations are computable
given 2S values, you know you must have at least (N/k)*S memory accesses total

In effect, this argument "partitions” the CDAG into (N/k) disjoint sets of iterations,
gets a lower bound (HBL-style, maybe) for each set, and sums them together

Can | also sum lower bounds together if the sets are not disjoint?

Olivry et al say: yes, if their "may-spill sets" are disjoint

"May-spill sets"

For a set V of iterations, its "may-spill set" is the set of iterations which have
1. both at least one incoming and at least one outgoing edge contained in V, or
2. at least 2 outgoing edges contained in V

Intuitively: The set of nodes in
V which "may spill" their value

to slow memory if we onl o e
have to compute V g e c— -~ G
\O \O \OJ

No communication with slow
memory at all in "no-spill" set;
no danger of double-counting

may-spill set

(c) Decomposition of the CDAG

Questions for ourselves

e Can we generalize this to get computable lower bounds on communication in
parallel?

e Can we use a more general model (and thus get stronger bounds on a wider
range of algorithms)?

e Since we know that expanding and low-diameter graphs have large lower
bounds in parallel hardware, can we get characterizations of which polyhedral
algorithms have these properties?

2i+1 i+C_1
(k+1 iterations at
depth k)
(2"k iterations at
depth k) _
2i+2 i+c_2

