
Automated Derivation of 
Parametric Data Movement 

Lower Bounds for Affine 
Programs

Olivry et al



The approach

● They present some algorithms to compute I/O complexity lower bounds 
(same setup as HBL)

○ Their lower bounds are justified using arguments about standard computation graphs, which 
they call CDAGs

○ They generate them from a polyhedral model representation, though

Two types of lower bounds:

● HBL-style
● A way of counting a lot of live variables

Also there's something about "may-spill sets"



CDAGs



Pebble Games and S+T partitioning

Model computation with communication by playing a 
"pebble game" on the CDAG (place a red pebble to 
mean "in fast memory," blue to mean "in slow memory"; 
only have a fixed number of red pebbles to use)

Translate this into a sequence of computes and loads

If you have a fast memory of size S, and you prove that 
any k iterations require S+T inputs, you can partition 
the whole computation into N/k pieces and each must 
contain at least T loads 



"Data flow graph"

Image taken directly from Olivry et al



Using the DFG

● Edges are direct dependencies, and are affine
● Paths/walks are composed dependencies

Find some paths/walks and argue that they correspond to projections between 
sets of iterations and sets of memory accesses; then apply HBL

● They identify two types of paths for which they can argue this

HBL

(More details 
here)



Using the DFG part 2

They also have a totally unrelated second lower bound they compute

If there are two disjoint sets of vertices in the CDAG V1 and V2, where everything 
in V1 has a path to V2, and I can find k disjoint paths between V1 and V2, then I 
need to do at least k-S loads from slow memory (if my fast memory has size S)

They find some special cases of this 
using the DFG

This is a bit strange and could maybe 
be extended usefully?



"May-spill sets"

Disclaimer: I don't fully understand this

General idea: If you have a fast memory of size S, you want to compute N 
iterations, and you know (through HBL, say) that only k iterations are computable 
given 2S values, you know you must have at least (N/k)*S memory accesses total

In effect, this argument "partitions" the CDAG into (N/k) disjoint sets of iterations, 
gets a lower bound (HBL-style, maybe) for each set, and sums them together

Can I also sum lower bounds together if the sets are not disjoint?

Olivry et al say: yes, if their "may-spill sets" are disjoint



"May-spill sets"

For a set V of iterations, its "may-spill set" is the set of iterations which have 

1. both at least one incoming and at least one outgoing edge contained in V, or 

2. at least 2 outgoing edges contained in V

Intuitively: The set of nodes in 
V which "may spill" their value 
to slow memory if we only 
have to compute V

No communication with slow 
memory at all in "no-spill" set; 
no danger of double-counting



Questions for ourselves

● Can we generalize this to get computable lower bounds on communication in 
parallel?

● Can we use a more general model (and thus get stronger bounds on a wider 
range of algorithms)?

● Since we know that expanding and low-diameter graphs have large lower 
bounds in parallel hardware, can we get characterizations of which polyhedral 
algorithms have these properties?

u

2i+1

2i+2

v

i+c_1

i+c_2

(2^k iterations at 
depth k)

(k+1 iterations at 
depth k)


