
Computational Models for Parallel Accelerators
HW/Theory Reading Group

Grace Dinh

6 April 2022

UC Berkeley

1

Motivation

“Fundamental” operations in traditional models of computation: bitwise
operations (AND, OR, XOR, NOT, etc.) or arithmetic operations (+,−,×, /).

Arithmetic circuits, Turing machines...

But in real chips have parallelism, and only in restricted shapes

2

Motivation

Vector parallelism (image source: Intel AVX-512 docs):

3

Motivation

NVIDIA TCU:

4

Motivation

How tomodel these forms of “restricted” parallelism?

Treat parallelism as constant factor: “the ostrich approach” - bury your head in
the sand and just ignore hardware factors

Multi-processor models (e.g. NC): don’t account for far more limited forms of
parallelism for these architectures, communication costs, etc.

Solution: new computational models with new primitives

5

Tensor Computational Units [1]

Fundamental operation: matrix multiplication

Specifically: a (m, l)-TCU model, a
√
m×

√
m×

√
mmatrix multiplication in

O(m+ l) time.

Intuition:
√
m×

√
m systolic array with l latency cost per instruction.

Asymmetricmatmuls (n×
√
m×

√
m) can be performed in O(n

√
m+ l) time.

6

TCUs and External-Memory Models

Very related to models we’ve looked at!

Theorem: Suppose some problem P with two input matrices and one output
matrices has a lower bound Fp on communication complexity on a system with
memory M = 3m+ O(1) with constant block size. Then any algorithm for P in
the weak TCU model (i.e. no ability to take advantage of “long” matrices) requires
at leastΩ(Fp) time.

Proof: each call to tensor unit is equivalent to loading two
√
m×

√
mmatrices

into memory and computing on the output.

7

Strassen-like Matmuls on TCUs

Strassen-likematmul splits each matrix into n0 equally-sized pieces and
performs p0 recursive matmuls on the matrices, for a runtime of O(nw0:=logn0

p0).
Classical n3 matmul is (n0, p0) = (4, 8), Strassen is (4, 7).

Theorem [1]: exists a (m, l)-TCU algorithm performing
√
n×

√
n×

√
nmatmul

(s.t. m ≥ n0) in time
T(n) = O

((n
m

)ω0

(m+ l)
)

Proof: Perform recursive matmul until small enough to fit inside
√
m. Theorem

comes immediately from solving the recurrence:

Tn =

O
(

n3/2

m1/2 +
n
m l
)

ifm ≤ n ≤ mn0

p0T(n/n0) + O(n) otherwise

8

FFTs and Stencils on TCUs

Cooley-Tukey: break an FFT of size n = n1n2 into (a) n1 subproblems of size n2,
(b) multiplication by roots of unity (O(n) size operation), and (c) n2 operations of
size n1.

Theorem: DFT of a vector with n entries on (m, l)-TCU costs O((n+ l) logm n).

Proof: set n1 =
√
m, n2 = n/

√
m. Cost of (a):

√
mT(n/

√
m). Cost of (b): O(n).

Cost of (c): a single ’long multiplication’, O(n+ l)

T =

{√
mT(n/

√
m) + O(n+ l) n > m

O(m+ l) n ≤ m

Solving gives the desired result.

9

Other Results

Sparse matmul, evenly balanced output sparsity:
O
(√

n
nnz(out)

(
nnz(out)

m

)ω0
(m+ l) + nnz(in)

)
APSP on n-vertex graph: O((n2/m)ω0(m+ l) log n)

10

Thanks for listening! Questions?

10

References i

Chowdhury, Rezaul, Francesco Silvestri, and Flavio Vella (2020). “A
Computational Model for Tensor Core Units”. In: Proceedings of the 32nd ACM
Symposium on Parallelism in Algorithms and Architectures. New York, NY,
USA: Association for Computing Machinery, pp. 519–521. ISBN:
9781450369350. URL:
https://doi.org/10.1145/3350755.3400252.

11

https://doi.org/10.1145/3350755.3400252

