Computational Models for Parallel Accelerators

1

HW/Theory Reading Group

Grace Dinh

6 April 2022

UC Berkeley

"Fundamental" operations in traditional models of computation: bitwise operations (AND, OR, XOR, NOT, etc.) or arithmetic operations (+, -, \times , /).

Arithmetic circuits, Turing machines...

But in real chips have parallelism, and only in restricted shapes

Motivation

Vector parallelism (image source: Intel AVX-512 docs):

Motivation

NVIDIA TCU:

How to model these forms of "restricted" parallelism?

Treat parallelism as constant factor: "the ostrich approach" - bury your head in the sand and just ignore hardware factors

Multi-processor models (e.g. NC): don't account for far more limited forms of parallelism for these architectures, communication costs, etc.

Solution: new computational models with new primitives

Fundamental operation: matrix multiplication

Specifically: a (*m*, *l*)-TCU model, a $\sqrt{m} \times \sqrt{m} \times \sqrt{m}$ matrix multiplication in O(m + l) time.

Intuition: $\sqrt{m} \times \sqrt{m}$ systolic array with / latency cost per instruction.

Asymmetric matmuls ($n \times \sqrt{m} \times \sqrt{m}$) can be performed in $O(n\sqrt{m} + l)$ time.

Very related to models we've looked at!

Theorem: Suppose some problem *P* with two input matrices and one output matrices has a lower bound F_p on communication complexity on a system with memory M = 3m + O(1) with constant block size. Then any algorithm for *P* in the *weak TCU model* (i.e. no ability to take advantage of "long" matrices) requires at least $\Omega(F_p)$ time.

Proof: each call to tensor unit is equivalent to loading two $\sqrt{m} \times \sqrt{m}$ matrices into memory and computing on the output.

Strassen-like matmul splits each matrix into n_0 equally-sized pieces and performs p_0 recursive matmuls on the matrices, for a runtime of $O(n^{w_0:=\log_{n_0} p_0})$. Classical n^3 matmul is $(n_0, p_0) = (4, 8)$, Strassen is (4, 7).

Theorem [1]: exists a (m, l)-TCU algorithm performing $\sqrt{n} \times \sqrt{n} \times \sqrt{n}$ matmul (s.t. $m \ge n_0$) in time

$$T(n) = O\left(\left(\frac{n}{m}\right)^{\omega_0}(m+l)\right)$$

Proof: Perform recursive matmul until small enough to fit inside \sqrt{m} . Theorem comes immediately from solving the recurrence:

$$T_n = \begin{cases} O\left(\frac{n^{3/2}}{m^{1/2}} + \frac{n}{m}I\right) & \text{if } m \le n \le mn_0\\ p_0 T(n/n_0) + O(n) & \text{otherwise} \end{cases}$$

Cooley-Tukey: break an FFT of size $n = n_1n_2$ into (a) n_1 subproblems of size n_2 , (b) multiplication by roots of unity (O(n) size operation), and (c) n_2 operations of size n_1 .

Theorem: DFT of a vector with *n* entries on (m, l)-TCU costs $O((n + l) \log_m n)$.

Proof: set $n_1 = \sqrt{m}$, $n_2 = n/\sqrt{m}$. Cost of (a): $\sqrt{m}T(n/\sqrt{m})$. Cost of (b): O(n). Cost of (c): a single 'long multiplication', O(n + l)

$$T = \begin{cases} \sqrt{m}T(n/\sqrt{m}) + O(n+l) & n > m\\ O(m+l) & n \le m \end{cases}$$

Solving gives the desired result.

Sparse matmul, evenly balanced output sparsity:

$$0\left(\sqrt{\frac{n}{nnz(out)}}\left(\frac{nnz(out)}{m}\right)^{\omega_0}(m+l) + nnz(in)\right)$$

APSP on *n*-vertex graph: $O((n^2/m)^{\omega_0}(m+l)\log n)$

Thanks for listening! Questions?

 Chowdhury, Rezaul, Francesco Silvestri, and Flavio Vella (2020). "A Computational Model for Tensor Core Units". In: Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures. New York, NY, USA: Association for Computing Machinery, pp. 519–521. ISBN: 9781450369350. URL: https://doi.org/10.1145/3350755.3400252.