
Communication Lower Bounds with HBL and
Polyhedral Models
HW/Theory Reading Group

Grace Dinh

09 & 16 March 2022

UC Berkeley

1

Agenda

Model: CPU w/ cache size M↔ unlimited slow memory.

Goal: find lower bound and upper bound (ideally constructive, i.e. actually
achievable) on the communication cost.

Interesting open problems will be denoted with .

2

Last time...

Matrix multiplication communication lower bound:

(number of operations)
M1/2

General strategy: in the iteration space (coordinates corresponding to iteration
indices; points corresponding to instructions), bound volume of set of points
(instructions) subject to constraints on sizes of projections.

Use Loomis-Whitney inequality: given some set S ⊂ Z3 and projections into 2D
Sx, Sy, Sz,

|S| ≤ |Sx|1/2|Sy|1/2|Sz|1/2

3

Actually finding the tiling

How do we actually get a communication-avoiding algorithm? loop tiling.

Goal: actually find some set S (“tile”) such that S actually attains
|S| = |Sx|1/2|Sy|1/2|Sz|1/2 .

Ansatz: S is an Tx × Ty × Tz parallelepiped. To find dimensions, maximize TxTyTz
subject to TxTy + TyTz + TxTz ≤ M; either solve numerically (“sigmoidal
programs”)...

... or relax to maximizing Bx + By + Bz s.t. Bx + By ≤ 1, By + Bz ≤ 1, and
Bx + Bz ≤ 1 where B∗ = logM T∗.

Obviously the optimal subtile is a cube, but if, say, Tx is larger than the loop
bound in that direction, tile would be illegal, so we add a limits on the tile size.
Theorem: this is still optimal! (hits some stronger lower bound that only exists
for “small” problems).

Can we generalize beyond matmul?

4

Generalizing...

Given program that accesses multidimensional arrays A1, ..., An:

for x1 ∈ [L1], ..., xd ∈ [Ld] :

Do computation using A1(ϕ1(x1, ..., xd)), ...An(ϕn(x1, ..., xd))

For example, in a 2D convolution defined by:

for {b, c, k,w, h, r, s} = 0 : {B, C, K,W, H, R, S} − 1

Out(k, h,w, b)+ = Image(r+ σww, s+ σhh, c, b)× Filter(k, r, s, c)

we would have

ϕ2(b, c, k,w, h, r, s) = (r+ σww, s+ σhh, c, b)

Limit ourselves to rearranging the program (goal: find optimal blockings).

5

Communication Lower Bound

Split our program into tiles of instructions, each of which consumes exactly M
words of memory movement between cache and slow memory.

What’s the fewest number of tiles we can do this with?

M words in cache at start of title. Read/write at most Mmore words. Number of
distinct memory addresses touched per tile≤ 2M.

What’s the biggest tile we can make such that the number of memory
locations accessed is at most O(M)?

communication lower bound = Ω

(
of operations

max # of instructions per tile
M
)

6

Bounding the Tile Size

Corollary to the discrete Brascamp-Lieb inequality [3] says:

of operations/tile ≤
∏
i∈[n]

Mpi

for any pi satisfying:

rank(V) ≤
∑

j

pjrank(ϕj(V))

for all additive subgroups V ofZd (more on this later).

Let pHBL :=min
∑

i pi under the BL constraints above. Then no tile can be bigger
than MpHBL , so the communication lower bound is (# operations)/MpHBL−1 words.

How do we enumerate the constraints?

7

Enumerating Brascamp-Lieb Constraints

rank(V) ≤
∑

j pjrank(ϕj(V)) for all additive subgroups V ofZd: polyhedron over
pj

Theorem [Valdimarsson ’10]: can replace “for all subgroups” with “for all
element of the lattice of subgroups generated by the kernels of the ϕj, where
the lattice’s operations are intersections and direct sums.

Leads to unbounded-time enumeration algorithm in general case, but tractable
for independent or “separable” kernels (as for CNNs).

Theorem [Corollary to Garg-Gurvits-Olivera-Wigderson ’16]: can enumerate all
the facets in double-exponential time in the number of loops/arrays, or optimize
over polyhedron in exponential time - currently best known algorithm. (more on
this in extra slides at end)

8

Duality

How to find actual tile?

HBL LP: lower bound exponent given bymin
∑

i pi s.t.

rank(V) ≤
∑

j

pjrank(ϕj(V))

Taking the dual gives a maximization problem that gives the optimal tile size!
(under certain assumptions, e.g. large loop bounds)

For small loop bounds, add additional constraints to the dual to bound problem
size. Provably optimal (hits a stronger lower bound, found by bounding ’slices’ of
the original problem and summing) for when ϕi are all projections.

9

Optimal Tilings

Generally: Ansatz tile shape (often rectangular), then numerically maximize tile
size w.r.t. memory footprint constraints.

Provably optimal (up to asymptotic factors) for certain problems (stride-1 CNNs,
or when ϕi are projections).

Works well in practice in other cases, or when additional constraints (e.g.
minimum tile size to ensure full utilization of a systolic array) or variables need
to be imposed for hardware reasons.

10

Loop Ordering

In tiling, we went from:

for {x1, x2, x3} = 0 : {L1, L2, L3} − 1

A1(x1, x2)+ = A2(x1, x3)× A3(x2, x3)

to

for {x†1 , x
†
2 , x

†
3} = 0 : {L1/T1, L2/T2, L3/T3} − 1

for {x
′

1 , x
′

2, x
′

3} = 0 : {T1, T2, T3} − 1

xi = x†i Ti + x
′

i

A1(x1, x2)+ = A2(x1, x3)× A3(x2, x3)

Current loop order: x†1 , x
†
2 , x

†
3 , x

′

1 , x
′

2, x
′

3. Can we get better results by swapping
orders?

11

Loop Ordering Reuse

Which order to place loops?

Loops “inside” the tile irrelevant: it’s all on fast memory, so arrangement doesn’t
affect on/off chip communication (i.e. just optimize for architecture).

Loops “outside” the tile need to be ordered correctly. Constant factor, but an
important one... for people here familiar with neural nets: corresponds to
weight-stationary, output-stationary, input-stationary dataflows.

Intuition: better bookkeeping to determine howmuch can be reused between
tiles.

12

Densities

for x1 ∈ [L1], ..., xd ∈ [Ld] :

Do computation using A1(ϕ1(x1, ..., xd)), ...An(ϕn(x1, ..., xd))

Definition: Let the subdomain SDj of a loop dimension xj be the “slice” formed by
fixing all xi for i < j, let its subdomain data footprint for array Ai, denoted SDFAi j
be the total memory footprint of the entire nested loop enclosed by dimension
xj. Then the inter-subdomain reuse SDRAi,j is defined as the number of elements
from A that may be kept in memory between successive iterations of the xj loop.

Now define inverse density:

IDAi,,j(x1, ..., xj ̸= 0) :=
SDFAi,j − SDRAi,j

|SDj|

IDAi,,j(x1, ..., xj = 0) :=
SDFAi,j
|SDj|

13

Finding an optimal loop ordering

Suppose we have a tiled loop nest. Let level l be the outermost dimension whose
entire subdomain data footprint fits in fast memory. Then the communication
cost for array A is:

C = IDA,,l(x1, ..., xl = 0)
∏

i∈[1,l−1]

Li + IDA,,l(x1, ..., xl ̸= 0)(1− Ll)
∏

i∈[1,l−1]

Li

Finding optimal loop ordering now just a matter of minimizing the total cost.

[Olivry et al. ’21]: let there be reuse for some array A, dimension d if, when
putting dimension d innermost, the SDF at the second-innermost level is not
significantly larger than the SDF at the innermost level.

Then, while there is reuse present for some array and dimension, place that
dimension “inside”, update the list of dimensions/arrays where there is reuse
present, and repeat. Once out of reuse, use arbitrary permutation.

14

Thanks for listening! Questions?

14

Extra Slides on BL Inequalities

14

Brascamp-Lieb Inequalities

Given a tuple B ofm functions Bi : Rn → Rni , and a tuple p of nonnegative reals
pi, there exists some constant C ∈ (0,∞] such that for all integrable
nonnegative functions fi:

∫
x∈Rn

∏
j∈[m]

(fj (Bjx))
pj dx ≤ C

∏
j∈[m]

(∫
xj∈Rnj

fj (xj) dxj

)pj

Generalizes Holder’s, Loomis-Whitney, sharp Young’s inequalities (among
others). Let fj be indicator functions that are 1 if and only if something is in the
shadow...

Questions:

1. Given (B, p), find BL(B, p) := C.

2. Given B, for which p is C finite?

15

The Brascamp-Lieb Polytope

1. [8] Given (B, p), find C: If (B, p) is feasible, the BL constant is:sup
Xj≻0

∏
j (det Xj)

pj

det
(∑

j pjB
†
j XjBj

)
1/2

(Try plugging in Gaussians).

2. [2] Given B, for which p is C finite? C is finite if and only if the following
two constraints hold

1. n =
∑

j

pjnj

2. dim(V) ≤
∑

j

pj dim(BjV) for all subspaces V ofRn

The set of such p is known as the BL polytope.

16

The Scaling Approach to BL

Theorem [1]: If a BL datum satisfies these two conditions (“is geometric”), then
the corresponding constant is 1.

• Projection: BjB†j = I for all j.

• Isotropy:
∑

j pjB
†
j Bj = I.

Theorem [2]: Suppose there exist matrices C, Cj such that B′j = C−1
j BjC. Then

BL(B′, p) =
∏

j (det (Cj))
pj

det(C)
BL(B, p)

Intuition: try to scale B to geometric. If we can, then C is finite, and we can find
it by keeping track of the scaling factors. Alternating minimization/operator
scaling!

17

Scaling Brascamp-Lieb

Theorem [5]: There exists a completely positive operator T such that (a) the BL
constant is the capacity of T and (b) BL(B, p) is finite if T is scalable to “doubly
stochastic”, i.e.

∑
i AiXA

†
i = I.

T consists of a set of matrices A1, ..., Am. T(X) =
∑

i AiXA
†
i . The capacity is

defined as the minimum determinant of T(X) for all psd X with determinant 1.

How do we find capacity of a completely positive operator?

Scale the Ai to LAiR so that
∑

i(LAiR)(LAiR)
† = I and

∑
i(LAiR)

†(LAiR) = I.

Theorem [4]: This converges in polynomially many iterations.

Theorem [4]: The operator is dimension non-decreasing, ie.
dim(

∑
i∈[m] Ai(V)) ≥ dim(V) for all subspaces V ofCn, if it is (singly)

normalized and “close” to doubly stochastic.

18

Connections to Invariant Theory

Left-right action: determinant-1 matrices L, R acting on a tuple of matrices
(A1, ..., Am), output is (LA1R, ..., LAmR).

Hilbert-Mumford for the left-right action: (A1, ..., Am) is not in the null cone (all
invariant polynomials vanish) iff it is dimension non-decreasing. [6]

Kempf-Ness: A = (A1, ..., Am) is not in the null cone iff A is scalable.

Efficient way to test membership in the BL polytope! [7]: also exists an
efficient algorithm to give the witness for a “bad V” if the operator is
dimension-decreasing.

Runtime: poly in bit complexity and the common denominator of the pj.
Exponential time to optimize, double-exponential to enumerate BL constraints.

Can we do better?

19

Embedding Computations in BL Polytopes

Given a ground set of vectors v1, ..., vm inRn, the linear matroid is the set of
indices I ⊆ [m] such that the vectors {vi : i ∈ I} are linearly independent.

Suppose we have two matroidsMv andMw, overm-sized ground sets {vi} and
{wi} respectively. The matroid intersection polytope is the convex hull of the
set of dimension-m 0-1 indicator vectors, where the nonzero indices of each
vector represent the indices i that give subsets of {vi} and {wi} that are both
bases forRn.

Theorem (Folklore): the matroid intersection polytope can be rewritten as:∑
j∈[m]

pj = n pi ≥ 0 ∀i

∑
j∈J

pj ≤ dim(Vj) and
∑
j∈J

pj ≤ dim(Wj) ∀J ⊆ [m]

where Vj is the span of {vj : j ∈ J}, likewise forWj.

20

Embedding Computations in BL Polytopes i

Theorem (Folklore): the matroid intersection polytope can be rewritten as:∑
j∈[m]

pj = n pi ≥ 0 ∀i

∑
j∈J

pj ≤ dim(Vj) and
∑
j∈J

pj ≤ dim(Wj) ∀J ⊆ [m]

where Vj is the span of {vj : j ∈ J}, likewise forWj.

Theorem [5]: This polytope corresponds to the BL polytope for

Bi =

(
0 vTi
wT
i 0

)
.

21

Embedding Computations in BL Polytopes ii

Notice that bipartite matching can be represented as the intersection of two
partition matroids, one for each side of the graph, and therefore can be
embedded into BL.

Can general matching be embedded in BL? Does this shed any light on
complex polytopes that can be optimized over?

Barthe, Franck (Oct. 1998). “On a reverse form of the Brascamp-Lieb
inequality”. In: Inventiones mathematicae 134.2, pp. 335–361. ISSN: 1432-1297.
DOI: 10.1007/s002220050267. URL:
https://doi.org/10.1007/s002220050267.
Bennett, J., A. Carbery, M. Christ, and T. Tao (2010). “Finite bounds for
Hölder-Brascamp-Lieb multilinear inequalities”. In: Math. Res. Lett. 17.4,
pp. 647–666.

22

https://doi.org/10.1007/s002220050267
https://doi.org/10.1007/s002220050267

Embedding Computations in BL Polytopes iii

Christ, Michael et al. (May 2013). Communication Lower Bounds and Optimal
Algorithms for Programs That Reference Arrays - Part 1. Tech. rep.
UCB/EECS-2013-61. EECS Department, University of California, Berkeley.
URL: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-
2013-61.html.
Garg, Ankit, Leonid Gurvits, Rafael Mendes de Oliveira, and Avi Wigderson
(2015). “A deterministic polynomial time algorithm for non-commutative
rational identity testing”. In: CoRR abs/1511.03730. arXiv: 1511.03730. URL:
http://arxiv.org/abs/1511.03730.
— (2016). “Algorithmic aspects of Brascamp-Lieb inequalities”. In: CoRR
abs/1607.06711. arXiv: 1607.06711. URL:
http://arxiv.org/abs/1607.06711.

23

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-61.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-61.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-61.html
https://arxiv.org/abs/1511.03730
http://arxiv.org/abs/1511.03730
https://arxiv.org/abs/1607.06711
http://arxiv.org/abs/1607.06711

Embedding Computations in BL Polytopes iv

Garg, Ankit and Rafael Mendes de Oliveira (2018). “Recent progress on
scaling algorithms and applications”. In: CoRR abs/1808.09669. arXiv:
1808.09669. URL: http://arxiv.org/abs/1808.09669.
Ivanyos, Gábor, Youming Qiao, and K. V. Subrahmanyam (2015).
“Non-commutative Edmonds’ problem and matrix semi-invariants”. In: CoRR
abs/1508.00690. arXiv: 1508.00690. URL:
http://arxiv.org/abs/1508.00690.
Lieb, Elliott H. (Dec. 1990). “Gaussian kernels have only Gaussian
maximizers”. In: Inventiones mathematicae 102.1, pp. 179–208. ISSN:
1432-1297. DOI: 10.1007/BF01233426. URL:
https://doi.org/10.1007/BF01233426.

24

https://arxiv.org/abs/1808.09669
http://arxiv.org/abs/1808.09669
https://arxiv.org/abs/1508.00690
http://arxiv.org/abs/1508.00690
https://doi.org/10.1007/BF01233426
https://doi.org/10.1007/BF01233426

