VLS| Models

Mainly from and/or inspired by Chazelle and Monier,
"A Model of Computation for VLSI with Related Complexity Results"

VLSI Chips

Top-Down view

VA

Computation goes
here

Area A

VA

front-end

FEOL |

back-end /
"Advanced Packaging"

Side view

lead-free

solder bump

Legend:

BEOL

Connection to other
things

Constant number of
layers for wires

All computation and memory
in 2d plane at bottom

"Standard" assumptions

e Each bit of memory takes at least constant area; each VA
individual bit of computation takes at least constant
area and constant time

e Aboundary of length L has at most O(L) wires across it
(and thus at most O(L) bandwidth for communication)

e Communicating a distance of d takes Q(d) time (this
was controversial in the 80s)

And sometimes: .
A
e All inputs and outputs must pass through the chip

perimeter (4VA) (no longer realistic for a single chip,
but may be relevant for a package?) |

Adding time and getting bounds
Consider a computation (hyper)graph of N nodes, with n I/0O values and minimum balanced cut of size k

1. All nodes must be mapped to some
unique location and time: AT = Q(N)

2. Bisections of the volume induce
balanced cuts: A= Q(k) (*)and
(A)T = Q(k) (therefore AT2=2Q(k?))

3. (maybe) all I/Os must pass through
the perimeter at some point:
(A)T 2 Q(n)

4. (in some cases) it must be possible
to communicate across the chip: T

> V(A)

Combining (1) and (4): T> 2 Q(N)

*: including memory-only area

Some example consequences

All one-output functions of n inputs take Q(¥n) time in
parallel on a chip, since whenever there is one output, all
inputs must have communication to the one place for the
output; this includes, say, accessing memory

What about binary trees for reductions? Some wires will
inevitably be length V(A*) (where A* is the total area
enclosing the computation), so we should not increase A*
beyond ¥nz; thankfully, this is achievable (do ¥nz in-place
accumulations of ¥n inputs each, then accumulate the
results in ¥n time).

More interesting results for specific problems, given
information about them (communication complexity, for
instance).

T T =T T

714 L7171 L7 1L L T7T-L

N A N N N I A O B

L1y 01 1) 1L

J I R A AN I R AN I A B

S I U N U N O I A

J N O A N I A B

L1 1T 1)) 1 I 1

T 1T | =1 T

71 171) L7171 LT7T-L

J E I N I N I B A O

S I N I AN A A AN S I A

T =T =T | =TI

7L L1714 L7 L) LT7TL

J N A N I A O

1 1 11 I 1

Using algorithm structure: Bellman-Ford on an expander

\4

BF computation
graph on G

Bellman-Ford is a dynamic programming
algorithm for single-source shortest paths
in a weighted graph G=(V, E) where
weights can be negative; it uses O(|V|*2)
subproblems and takes O(E) time to
compute each layer of |V| of them.

For sparse (constant-degree) graphs, this
is O(|V|*2) sequential time.

How about parallel time?

Parallelization on a chip

We can get 3 bounds on parallel runtime for Bellman-Ford on a sparse graph:

1. T*=Q(N) gives T =2 Q(|V|*2/3))

2. Dependencies must be respected even in parallel, and the depth of the graph
is V; this gives us T = Q(|V])

3. (I claim) Tz Q(|V|™N4/3}/(log |V]))

This will hold when the graph we are operating on has the following property:

For all subsets S of vertices, with |S| < |V|/4, the number of vertices with an edge
into S is at least 2|S| (small-set vertex expander)

The computation graph for expanders

If the graph is a small-set vertex expander, each node in
layer i of the computation graph depends on at least 2

LI nodes in the previous layer, 4 nodes in the one before
that, etc...

@) At least V/4 nodes in layer (i-log_2(V/4))
W / Iterate the cube-root bound:

O T.iz=QVA1/3)) + T {i- O(log V)}
m = ow T_{V-1} 2 Q(VA(1/3))*Q(V/log V)

O 1 Q(VM4/3}(log V))

Probably not achievable, but T=0(V*{3/2}) probably is (can
© © © © this bound be strengthened?)

Final notes

e These bounds are stated for any 2d computation space, and therefore apply

to all single chips, which is nice
o All accelerator architectures

e Many of them apply to full-3d computation, with a difference (usually by 1) in
exponent

e Using more information and assumptions from the architecture, or from the
algorithm, or from the mapping (polyhedral...?) can produce better bounds

e | do not suspect that we will be able to produce anything interesting without
assumptions about algorithms

e Other quantities are of interest (total communication distance for energy?)

