VLSI Models

Mainly from and/or inspired by Chazelle and Monier, "A Model of Computation for VLSI with Related Complexity Results"

"Standard" assumptions

- Each bit of memory takes at least constant area; each individual bit of computation takes at least constant area and constant time
- A boundary of length L has at most O(L) wires across it (and thus at most O(L) bandwidth for communication)
- Communicating a distance of d takes Ω(d) time (this was controversial in the 80s)

And sometimes:

• All inputs and outputs must pass through the chip perimeter $(4\sqrt{A})$ (no longer realistic for a single chip, but may be relevant for a package?)

Adding time and getting bounds

Consider a computation (hyper)graph of N nodes, with n I/O values and minimum balanced cut of size k

- 1. All nodes must be mapped to some unique location and time: $AT \ge \Omega(N)$
- 2. Bisections of the volume induce balanced cuts: $A \ge \Omega(k)$ (*) and $\sqrt{(A)T \ge \Omega(k)}$ (therefore $AT^2 \ge \Omega(k^2)$)
- 3. (maybe) all I/Os must pass through the perimeter at some point: $\sqrt{(A)T \ge \Omega(n)}$
- 4. (in some cases) it must be possible to communicate across the chip: T $\geq \sqrt{(A)}$

Combining (1) and (4): $T^3 \ge \Omega(N)$

*: including memory-only area

Some example consequences

All one-output functions of n inputs take $\Omega(\sqrt[3]{n})$ time in parallel on a chip, since whenever there is one output, all inputs must have communication to the one place for the output; this includes, say, accessing memory

What about binary trees for reductions? Some wires will inevitably be length $\sqrt{(A^*)}$ (where A* is the total area enclosing the computation), so we should not increase A* beyond $\sqrt[3]{n^2}$; thankfully, this is achievable (do $\sqrt[3]{n^2}$ in-place accumulations of $\sqrt[3]{n}$ inputs each, then accumulate the results in $\sqrt[3]{n}$ time).

More interesting results for specific problems, given information about them (communication complexity, for instance).

Using algorithm structure: Bellman-Ford on an expander

G

Bellman-Ford is a dynamic programming algorithm for single-source shortest paths in a weighted graph G=(V, E) where weights can be negative; it uses $O(|V|^2)$ subproblems and takes O(E) time to compute each layer of |V| of them.

For sparse (constant-degree) graphs, this is $O(|V|^2)$ sequential time.

How about parallel time?

Parallelization on a chip

We can get 3 bounds on parallel runtime for Bellman-Ford on a sparse graph:

- 1. $T^3 \ge \Omega(N)$ gives $T \ge \Omega(|V|^{(2/3)})$
- 2. Dependencies must be respected even in parallel, and the depth of the graph is V; this gives us $T \ge \Omega(|V|)$
- 3. (I claim) $T \ge \Omega(|V|^{4/3}/(\log |V|))$

This will hold when the graph we are operating on has the following property:

For all subsets S of vertices, with $|S| \le |V|/4$, the number of vertices with an edge into S is at least 2|S| (small-set vertex expander)

The computation graph for expanders

If the graph is a small-set vertex expander, each node in layer i of the computation graph depends on at least 2 nodes in the previous layer, 4 nodes in the one before that, etc...

At least V/4 nodes in layer (i-log_2(V/4))

Iterate the cube-root bound:

 $T_i \ge \Omega(V^{(1/3)}) + T_{i - O(\log V)}$

 $T_{V-1} \ge \Omega(V^{(1/3)})^* \Omega(V/\log V)$

 $\mathsf{T} \geq \Omega(\mathsf{V}^{4/3})/(\log \mathsf{V}))$

Probably not achievable, but $T=O(V^{3/2})$ probably is (can this bound be strengthened?)

Final notes

- These bounds are stated for any 2d computation space, and therefore apply to all single chips, which is nice
 - All accelerator architectures
- Many of them apply to full-3d computation, with a difference (usually by 1) in exponent
- Using more information and assumptions from the architecture, or from the algorithm, or from the mapping (polyhedral...?) can produce better bounds
- I do not suspect that we will be able to produce anything interesting without assumptions about algorithms
- Other quantities are of interest (total communication distance for energy?)